

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Training Course 2023

Radiation and cloud formation Aerosol dynamics Cas phase chemistry 2018040800, vv: 003, ICON-ART, AOD_DUST

DWD

KIT - The Research University in the Helmholtz Association

Instructors

• Ali Hoshyaripour Group leader, IMK-TRO, KIT

Julia Bruckert
Research Associate, IMK-TRO, KIT

• Lisa Muth Research Associate, IMK-TRO, KIT

Please note that you can use web browser (preferably Chrome) or PC client or Apps to join this meeting.

During the course, you will get an account to access the DKRZ supercomputer Levante. Please ONLY use this account, regardless whether you have another account on Levante.

You will need a laptop or PC with Linux terminal for login and the exercises.

Part 1: Introduction to the ICON-ART – technical aspects

Ali Hoshyaripour and the IMK-TRO ARTists

IC N-ART

Aerosol and Reactive Trace gases

Rieger et al. (2015), Weimer et al. (2017) A component of ICON modeling framework that enables prognostic treatment of atmospheric composition + interactions

Main features:

- Online fully-coupled for LEM, NWP and climate simulations
- Adaptable to global, nested and limited area configurations
- Fully modular and interoperable
- Scalable and flexible tracer structure, chemistry and aerosol dynamics

Atmospheric composition models

Modelling atmospheric composition

"Eulerian" atmospheric models solve mass balance (or continuity) equation in 3-D assemblage of gridboxes

Emissions treated in ART

Continuity Equation for gases

$$\frac{\partial N_q}{\partial t} + \nabla \bullet (\mathbf{v}N_q) = (\nabla \bullet \mathbf{K}_h \nabla)N_q$$
$$+ R_{emisg} + R_{depg} + R_{washg} + R_{chemg}$$
$$+ R_{nucg} + R_{deg} + R_{dp/sg} + R_{ds/eg} + R_{hrg}$$

 R_{emisg} = rate of surface or elevated emission R_{depg} = rate of dry deposition to the ground R_{washg} = rate of washout to the ground or from one altitude to another R_{chemg} = rate of photochemical production or loss R_{nucg} = rate of gas loss due to homogeneous or heterogeneous nucleation $R_{c/eg}$ = rate of gas loss (production) due to condensation (evaporation) $R_{dp/sg}$ = rate of gas loss (production) due to depositional growth (sublimation) $R_{ds/eg}$ = rate of gas loss (production) due to dissolutional growth (evaporation) R_{hrg} = rate of gas loss (production) due to heterogeneous reactions

All rates are expressed in units of concentration per unit time (e.g., molec. cm^{-3} s⁻¹).

Chemistry

- p_i [kg m-3 s-1] overall production rate constant
- ℓ_i [s-1] overall loss rate constant
- If p_i and ℓ_i are independent of the density p_i , the equation is linear and has a simple exponential solution.
- However, p_i and l_i often depend on p_i due to coupling with other species in the chemical mechanism. One then needs to solve the equation as part of a system of coupled ordinary differential equations, one for each species in the mechanism.

KPP – Kinetic Pre-Processor

- Key challenge in chemistry modeling:
 - Any update (new species, reaction, rate parameter etc) → complete revision of all ODEs → error prone!
- KPP has solved this issue (Demian et al 2002)

Karlsruhe Institute of Technology

The fundamental problem with aerosols

The size distribution of aerosol particles evolves continuously in the atmosphere as a result of *microphysical processes*.

These processes are computationally challenging to represent in models

Processes of nucleation and aerosol-cloud interactions are highly non-linear.

Continuity Equation for aerosols number conc.

$$\frac{\partial n_i}{\partial t} + \nabla \bullet (\mathbf{v} n_i) = (\nabla \bullet \mathbf{K}_h \nabla) n_i$$
$$+ R_{emisn} + R_{depn} + R_{sedn} + R_{washn} + R_{nucn} + R_{coagn}$$

 $R_{\rm emisn}$ = rate of surface or elevated emission

 R_{depn} = rate of particle dry deposition to the surface

 R_{sedn} = rate of sedimentation to the surface or between layers

 R_{washn} = rate of washout to the surface or from one altitude down to another

 R_{nucn} = rate of production of new particles due to homogeneous nucleation

 R_{coagn} = rate of coagulation of number concentration

Continuity Equation for aerosols volume conc.

$$\frac{\partial v_{q,i}}{\partial t} + \nabla \bullet (\mathbf{v} v_{q,i}) = (\nabla \bullet \mathbf{K}_h \nabla) v_{q,i}$$
$$+ R_{emisv} + R_{depv} + R_{sedv} + R_{washv} + R_{nucv} + R_{coagv}$$
$$+ R_{clev} + R_{dplsv} + R_{dslev} + R_{eqv} + R_{aqv} + R_{hrv}$$

 $R_{c/ev}$ = rate of change due to condensational growth (evaporation) $R_{dp/sv}$ = rate of change due to depositional growth (sublimation) $R_{ds/ev}$ = rate of change due to dissolutional growth (evaporation) R_{eqv} = rate of change due to reversible chemical equilibrium reactions R_{aqv} = rate of change due to irreversible aqueous chemical reactions R_{hrv} = rate of change due to heterogeneous reactions on particle surfaces

Modal approach for modelling aerosols

• The modal approach results from a compromise that allows to represent the evolution of both the aerosol size distribution and the degree of mixing at an affordable computational cost but using a number of assumptions.

Aerosol Dynamics (AERODYN) in ICON-ART

- Flexible log-normal modes
- For each mode, prognostic equations for the number density and the mass concentration are solved:

$$\frac{\partial}{\partial t}M_{0,i} = -\operatorname{Ca}_{0,ii} - \operatorname{Ca}_{0,ij} + \operatorname{Nu}_0,$$
$$\frac{\partial}{\partial t}M_{3,i} = -\operatorname{Ca}_{3,ij} + \operatorname{Co}_{3,i} + \operatorname{Nu}_3,$$

 the ISORROPIA II for gas-aerosol partitioning

Aerosol effects on the atmosphere

Aerosol optical properties in ICON-ART

• Natural aerosols as externally mixed:

Saharan Dust,	3 modes,	Shape
Volcanic Ash	3 modes,	Shape, composition
<u>Sea Salt</u>	3 modes,	RH = 70%
Biomass Burning	1 mode	Composition (OC/BC = 30), shape: sphere

Natural aerosols as internally mixed: Volcanic Aerosols Aerodyn,

Core-Shell

What do I need for an ICON-ART simulation

- Everything that you need for ICON simulation (grid, external parameters, initial conditions etc)
 - ART namelist and run_nml switches
 - Input data: provide the input parameters/values that are required for a simulation → Depend on application
 - XML files: provide additional information about the ART parameters → Depend on application (see 2nd part)

Enabling ART in a simulation

! run nml: general switches ------

&run_nml

ltestcase	=	.FALSE.
num_lev =	50	
ltransport	=	. TRUE .
•••••••		

lart = .TRUE.

ART Namelist

&art_nml			
lart_xxx	: LOGI	CAL \rightarrow to switch processes on and off	
iart_yyy	: INTE	GER $ ightarrow$ how to handle the details	
cart_zzz	: CHARACTER \rightarrow where to find input data (e.g. XML)		
<u>e.g.</u>			
lart_chem		= .FALSE.	
lart_aerosol	=	. TRUE .	
iart_init_aero	=	0	
cart_aerosol_xml	=	'\${INDIR}/tracers_aerosol.xml'	
cart_modes_xml	=	'\${INDIR}/modes.xml'	

General ART namelist parameters

Namelist parameter	Default	Description	If .TRUE. then needs
lart_chem	.FALSE.	Enables chemistry.	<pre>lart_chemtracer = .TRUE. OR lart_mecca = .TRUE.</pre>
lart_chemtracer	.FALSE.	Switch for simple OH chemistry	cart_chemtracer_xml
lart_mecca	.FALSE.	Switch for kpp chemistry	cart_mecca_xml
lart_pntSrc	.FALSE.	Enables addition of point sources	cart_pntSrc_xml
lart_aerosol	.FALSE.	Main switch for the treatment of atmospheric aerosol.	cart_aerosol_xml cart_modes_xml
lart_diag_out	.FALSE.	Enables diagnostic output fields	cart_diagnostics_xml

AERODYN in the ART Namelist

&art_nml

•••

iart_modeshift	=	1 ! $0 = off; 1 = on$
iart_isorropia	=	1 ! $0 = off; 1 = on$
cart_aerosol_xml	=	'\$path/tracers_aerosol.xml'
cart_modes_xml	=	'\$path/modes.xml'
cart_coag_xml	=	'\$path/coagulate.xml'
cart aero emiss xml	=	'\$path/aero_emiss.xml'

Input data - Initial conditions

All input data should be "cart_input_folder" (in art_nml) remapped to ICON grid as NetCDF with the following name convention:

Input data - Emissions

<u>Type</u>

- Point sources:
- Sea salt :
- Mineral dust:
- Biogenic VOCs:
- Anthropogenic emissions:
- Biomass burning:

<u>Data</u>

XML-file

no extra data necessary Soil type data ART_STY Emissions/Vegetation ART_BIO/ART_PFT Emission data sets ART_ANT Satellite data ART_BCF

Aerosol-cloud-radiation interactions

Interactions	Parameter	Value	ICON Namelist	.AND. in art_nml
Aerosol-cloud	inwp_gscp	6	nwp_phy_nml	iart_aci_warm = 0,1 iart_aci_cold = 0-7
Aerosol-radiation	irad_aero	9	radiation_nml	iart_ari = 1

NOTE: Use aerosol-cloud interactions with caution as they are not tested for all combinations. Please contact us if you are interested in such applications.

ART - Directories

- aerosol_dynamics
- chem_init
- chemistry
- emissions
- externals
- io
- phy_interact
- runctrl_examples
- shared
- tools

- : condensation, nucleation, coagulation etc.
- : initialization of chemistry
- : chemical processes
- : all emissions
- : external libraries
- : read and write
- : interaction with radiation and clouds
- : a place to find examples \odot
- : modules for initialization and run-time
- : diagnostics and conversions

Part 2: Introduction to XML files

Julia Bruckert and the IMK-TRO ARTists

XML Files

- Extensible Markup Language (XML)
- Human- and machine-readable format

```
<modes>
<aerosol id="asha">
<kind type="char">2mom</kind>
<d_gn type="real">1.190E-6</d_gn>
<sigma_g type="real">1.410E+0</sigma_g>
<rho type="real">2.600E+3</rho>
</aerosol>
```

Why do we need XML files?

ART – Tracers

Sea Salt Mineral Dust Volcanic Ash Chemical Species

Different for every run

. . .

Xml files

- 1. Chemtracer for chemical species and passive tracers
- 2. MECCA chemistry tracer \rightarrow will be automatically generated
- 3. Aerosol tracers
- 4. Aerosol modes
- 5. Coagulation
- 6. Chemistry emission
- 7. Aerosol emission
- 8. Point source

See examples in iconkit/externals/art/runctrl_examples/xml_ctrl/

9. Diagnostics 10.Mie, Meng

tracers_chemtracer.xml

<tracers>

<chemtracer id="testtr" full="FALSE" chemtr="TRUE" > <tag001 type="char">chemtr</tag001> <mol_weight type="real">1.190E-6</mol_weight> <transport type="char">stdchem</transport> <unit type="char">mol mol-1</unit> <c_solve type="char">passive</c_solve> </chemtracer> <chemtracer id="TRCH4" full="FALSE" chemtr="TRUE" >

</chemtracer>
</tracers>

Passive tracer: no chemical depletion

. .

tracers_chemtracer.xml

<tracers>

••

<chemtracer id="testtr" full="FALSE" chemtr="TRUE" >

</chemtracer> <chemtracer id="TRCH4" full="FALSE" chemtr="TRUE" > <tag001 type="char">chemtr</tag001> <mol_weight type="real">1.190E-6</mol_weight> lifetime type="real">1.410E+0</lifetime> <transport type="char">stdchem</transport> <unit type="char">mol mol-1</unit> <c solve type="char">OH</c solve> char">TRCO</products> </chemtracer> </tracers>

Depletion by OH (OHconcentration is parameterized)

tracers_mecca.xml

Will be generated automatically (see MECCA-Experiment on Friday)!

```
<tracers checksum="ba2cb9611f43db61cc172b2d9d1e30f9">
 <meccatracer id="O2 1D" full="TRUE" chemtr="FALSE">
  <tag001 type="char">full</tag001>
  <mol weight type="real">32.0E-3</mol weight>
  <transport type="char">stdaero</transport>
  <number type="int"> 1 </number>
  <iconv type="int">1</iconv>
  <iturb type="int">1</iturb>
  <init mode type="int">0</init mode>
  <init_name type="char">O2_1D</init_name>
  <unit type="char">mol mol-1</unit>
  <c solve type="char">mecca</c solve>
 </meccatracer>
```

Do not change the order of tracers in the MECCA xml !!

Tags in chemtracer and mecca xml

tag	type	options	description
c_solve	character	param, lt, cold, OH, linoz,	solving mechanism/strategy
		simnoy, passive	
emissions		anthropogenic, biogenic,	usage see in
		biomassBurning	$tracers_chemtracer_amip.xml^*$
$htop_proc$	real	in m	top height for processes
iconv	integer	0 (off), 1 (on)	transport by convection (default=1)
initc	character	file	initialize from Input file
$init_mode$	integer	0 (off), 1 (on)	initialize tracer
$init_name$	character		name of tracer in initialization file
iturb	integer	0 (off), 1 (on)	transport by turbulence (default=1)
latbc	character	file	read data for LBC
lfeedback	integer	0 (off), 1 (on)	child \rightarrow parent feedback in nested
			simulations (default= 0)
lifetime	real	in s	value for lifetime
${ m mol_weight}$	real	in kg/mol	value for molar weight
$\operatorname{products}$	character	name of tracer	name of resulting tracer after depletion
tag001,	character		name of tag to be added to tracer name
${f transport}$	character	stdaero, stdchem,, off	choice of transport template
unit	character	e.g., mol mol-1	unit of tracer

* in icon-kit/externals/art/runctrl_examples/xml_ctrl/

tracers_aerosol.xml

```
<tracers>
 <aerosol id="nmb">
    <moment type="int">0</moment>
    <mode type="char">insol_acc,insol_coa,giant</mode>
    <unit type="char">kg-1</unit>
    <transport type="char">stdaero</transport>
 </aerosol>
 <aerosol id="ash">
    <moment type="int">3</moment>
    <mode type="char">insol_acc,insol_coa,giant</mode>
    <sol type="real">0.</sol>
    <mol weight type="real">50.00E-3</mol weight>
    <rbox/rho type="real">2.650E3</rho>
    <unit type="char">mug kg-1</unit>
    <transport type="char">stdaero</transport>
 </aerosol>
```

Tags in aerotracer xml

tag	type	options	description	
htop_proc	real	in m	top height for processes	_
initc	character	file	initialize from Input file	
inucl	integer	0 (off), 1 (on)	H2SO4 nucleation for so4 tracer (de-	
			fault=1); 1 for so4_sol_ait, 0 for other	
			so4 tracer)	
label	character	e.g., dusta	allows to name tracers individually	
latbc	character	file	read data for LBC	
lfeedback	integer	0 (off), 1 (on)	child \rightarrow parent feedback in nested	
			simulations (default= 0)	
\mathbf{mode}	character	insol_acc, mixed_acc,	indicates in which modes the tracer oc-	
			curs	
${ m mol}_{-}{ m weight}$	real	in kg/mol	value for molar weight	
\mathbf{moment}	integer	0, 3	zeroth (number) or third (mass) mo-	
			ment	
\mathbf{rho}	real	in g/m3	density of tracer, not needed for zeroth	
			moment	
\mathbf{sol}	integer	0 (no), 1 (yes)	indicates whether the tracer is soluble	
			or not	
${\it transport}$	character	stdaero, stdchem,, off	choice of transport template	
\mathbf{unit}	character	e.g., mug kg-1, kg-1	unit of tracer	

- productDefinitionTemplate
- constituentType
- discipline
- parameterCategory
- parameterNumber
- bitsPerValue
- typeOfDistributionFunction
- numberOfModeOfDistribution
- modeNumber
- numberOfDistributionFunctionParameters
- localInformationNumber
- scaledValueOfDistributionFunctionParameter_1
- scaleFactorOfDistributionFunctionParameter_1
- scaledValueOfDistributionFunctionParameter_2
- scaleFactorOfDistributionFunctionParameter_2

modes.xml

<modes> <aerosol id="insol acc"> <kind type="char">2mom</kind> <d_gn type="real">0.2E-6</d_gn> <sigma_g type="real">2.0</sigma_g> <condensation type="int">0</condensation> <icoag type="int">0</icoag> </aerosol> <aerosol id="insol coa"> A 44 A </aerosol><aerosol id="giant"> . . . </aerosol> </modes>

Initialization of modes with median diameter and standard deviation ≠ emission distribution !!!

Activation of aerosol dynamical processes

Tags in modes xml

tag	type	options	description	always rec
condensation	integer	0 (off), 1 (on)	condensation of H2SO4 on this mode?	,
d_gn	real	in m	value for the initial median diameter of	of
			the number distribution	
$dissfac_mean$	real		dissociation factor (needed with	h
			ikoehler=1)	
icoag	integer	0 (off), 1 (on)	mode involved in coagulation? If 1 fo	or
			any mode, then provide coagulate.xml	l
ikoehler	integer	0 (off), 1 (on)	Activation via Köhler theory (warn	n
			clouds), needs dissfac_mean tag	
kind	character	$1 \mod \text{ or } 2 \mod 1$	1-moment or 2-moment description of	of
			distribution	
$\mathbf{sigma}_{\mathbf{g}}$	real		standard deviation of the distribution	
shift2larger	character	e.g., sol_acc	Name of larger mode to be shifted to),
			when diameter threshold (shift_diam)
			exceeded	
shift2mixed	character	e.g., mixed_acc	Name of mixed mode to be shifted to),
			when soluble mass threshold of 5% ex	[-
			ceeded	
${\rm shift}_{-}{\rm diam}$	real	in m	diameter threshold for shift2larger	

Institute of Meteorology and Climate Research

coagulate.xml

<coagulate> <smallmode id="insol_acc"> <nmodes typ e="int">4</nmodes> <bigmode id ="insol_acc" type="char">insol_acc</bigmode> <bigmode id ="mixed_acc" type="char">mixed_acc</bigmode> <bigmode id ="insol_coa" type="char">mixed_acc</bigmode> <bigmode id ="mixed_coa" type="char">mixed_coa</bigmode> <bigmode>

```
<smallmode id="insol_coa">
    <nmodes type="int">2</nmodes>
    <bigmode id="insol_coa" type="char">insol_coa</bigmode>
    <bigmode id="mixed_coa" type="char">mixed_coa</bigmode>
    </smallmode>
</coagulate>
```


aero_emiss.xml (emission mapping to modes)

- Median diameter number distribution
- Median diameter mass distribution

Standard deviation

<emiss>

Tags in aerosol emission xml

routine options: volc, volc_fplume, dust, biomass_burn, seas_smith, seas_monahan, seas_martensson

tag	type	options	description
nmodes	integer		number of emission modes
d_g0_*	real		median diameter of number distribu-
			tion of mode $*$ (e.g., d_g0_1, d_g0_2,
			d_g0_3)
d_g3_*	real		median diameter of mass distribution of
			$mode * (e.g., d_g3_1, d_g3_2, d_g3_3)$
\mathbf{rho}	real	in kg/m3	particle density (same for all modes)
$sigma_g^*$	real		standard deviation of mode $*$
substance	character	ash, dust, na, cl, soot	emitted substance
		1	1

XML files for AERODYN

\${ARTDIR}/runctrl_examples/xml_ctrl/:

- tracers_aerosol.xml
- modes.xml
- emission.xml
- coagulate.xml

XML files can determine whether or not AERODYN processes are accounted for. This means, we can still have simulations of externally mixed aerosols (**no AERODYN**).

Others

- Point Source xml
- Diagnostics xml example: iconkit/externals/art/runctrl_examples/xml_ctrl/diagnostics_aerosol_with_grib2.xml

Point Source

 Emission in single point

(B)

• Emission with uniform profile

(C)

Karlsruhe Institute of Technology

Emission with user defined profile

pntSrc.xml case (A)

<sources>

```
<pntSrc id="testtracer">
    <lon type="real">10.1</lon>
    <lat type="real">49.9</lat>
    <lat type="real">testtr</substance>
    <lat type="real">2000.0</height>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
    <lastronge type="real">testtr</substance>
```

pntSrc.xml case (B)

<sources> <pntSrc id="testtracer"> <lon type="real">10.1</lon> <lat type="real">49.9</lat> negative height: <substance type="char">testtr</substance> allows emission with <height type="real">-2000.0</height> uniform profile from <source_strength type="real">150.0</source_strength> surface to <a href="https://www.englight-surface-complete-comple <unit type="char">kg s-1</unit> </sources>

pntSrc.xml case (C)

<sources>

<pntSrc id="testtracer"> <lon type="real">10.1</lon> <lat type="real">49.9</lat> <substance type="char">testtr</substance> <height type="real">2000.0</height> <height bot type="real">500.0</height bot> <source strength type="real">150.0</source strength> <unit type="char">kg s-1</unit> </sources>

pntSrc.xml case (C)

<sources>

```
<pntSrc id="testtracer">
    <lon type="real">10.1</lon>
    <lat type="real">49.9</lat>
    <substance type="char">TRSO2</substance>
    <height type="real">2000.0</height>
    <height_bot type="real">500.0</height_bot>
    <source strength type="real">150.0</source strength>
    <emiss_profile type="char">0.1*[z_star] - sqrt(pi)*erf([zstar])</emiss_profile>
    <unit type="char">kg s-1</unit>
  </pntSrc>
</sources>
```

Tags in point source xml

tag	type	options	description
$dg3_emiss$	real	in m	median diameter of aerosol mass distri-
			bution
$emiss_profile$	character		anti-derivative of emission profile
endTime	character		end time of emission
			(default = 9999 - 12 - 31T00:00:00)
\mathbf{height}	real	in m	emission height
$height_bot$	real	in m	bottom height
lat	real	in degree	latitude
lon	real	in degree	longitude
$sigma_emiss$	real		standard deviation of aerosol distribu-
			tion
startTime	character		start time of emission
			(default = 1582 - 10 - 15T00:00:00)
$source_strength$	real		emission source strength
substance	character	e.g., TRSO2	substance nme from tracer xml
\mathbf{unit}	character	e.g., kg s-1	unit of source strength

Part 3: Configuration and Installation

Julia Bruckert and the IMK-TRO ARTists

Three different storage spaces on Levante

- Home: to store shell setup files, source codes, scripts, and important files (24GB)
- Work: project space shared between all users of a project
- Scratch: 15TB, data deleted after 2 weeks

Compile the ICON-ART Code

- Login on Jupyterhub on Levante (login data on next slide): <u>https://jupyterhub.dkrz.de/hub/home</u>
- Open new terminal and go to the directory with the ICON-ART Code
 cd icon-kit
- Configure and compile the code in icon-kit/ :

./config/dkrz/levante.intel --enable-art --enable-ecrad

make – j 8

Part 4: Exercises

Julia Bruckert and the IMK-TRO ARTists

DWD

Exercise 1 Simulation of a Volcanic Eruption

Objectives: How to introduce a point source How to introduce externally and internally mixed aerosols

Exercise 1.1:

- Simulation of the last Raikoke eruption in June 2019 with externally mixed aerosols
- Open Exp1-1.ipynb in ~/Volcano/ and follow the instructions
- Plot the results with the provided Python script

https://earthobservatory.nasa.gov/i mages/145226/raikoke-erupts

Institute of Meteorology and Climate Research

57

Exercise 1.2:

- Repeat the simulation of the last Raikoke eruption in June 2019 with internally mixed aerosols
- Open Exp1-2.ipynb in ~/Volcano/ and follow the instructions
- Plot the results and discuss the differences to the previous simulation

https://earthobservatory.nasa.gov/i mages/145226/raikoke-erupts

Exercise 2

- 1. Emission and transport of mineral dust
- 2. Interactions of mineral dust with radiation

Objectives:

How to introduce aerosol tracers and modes How to introduce online emissions How to activate interactions in namelist

Mineral dust emission

iart_dust = 1

Requires external parameters. These are read from an external Soil Type dataset.

Mode	dg in µm	σ
1	1.7	1.5
2	6.7	1.6
3	14.2	1.7

External data for mineral dust simulation

	· · ·
Parameter	Description
fr_hcla	Fraction of soil type Heavy Clay in grid cell (without dimension).
fr_silc	Fraction of soil type Silty Clay in grid cell (without dimension).
fr_lcla	Fraction of soil type Light Clay in grid cell (without dimension).
fr_sicl	Fraction of soil type Silty Clay Loam in grid cell (without dimension).
fr_cloa	Fraction of soil type Clay Loam in grid cell (without dimension).
fr_silt	Fraction of soil type Silt in grid cell (without dimension).
fr_silo	Fraction of soil type Silt Loam in grid cell (without dimension).
fr_scla	Fraction of soil type Sandy Clay in grid cell (without dimension).
fr_loam	Fraction of soil type Loam in grid cell (without dimension).
fr_sclo	Fraction of soil type Sandy Clay Loam in grid cell (without dimension).
fr_sloa	Fraction of soil type Sandy Loam in grid cell (without dimension).
fr_lsan	Fraction of soil type Loamy Sand in grid cell (without dimension).
fr_sand	Fraction of soil type Sand in grid cell (without dimension).
fr_udef	Fraction of Undefined soil type in grid cell (without dimension).

Table 3.3.: External input parameters necessary for the mineral dust emission scheme.

Exercise 2.1.: Steps

- Open Exp02.ipynb in ~/Dust/ and follow the instructions
- Plot the results with the provided Python script

&art_nml

lart_aerosol	= .TRUE.	! activate treatment of aerosols
iart_dust	= 1	! activate dust emission
iart_init_aerosol	= 5	! Initialization from file
cart_aerosol_xml	= ' <path to="" tracer="" xml="">'</path>	
cart_modes_xml	= ' <path modes="" to="" xml="">'</path>	
cart_diagnostics_xml	= ' <path diagnostics="" to="" xml="">'</path>	! necessary to write emission to output
cart_input_folder	= ' <path data="" external="" for="" min<="" td="" to=""><td>eral dust and aerosol initialization file>'</td></path>	eral dust and aerosol initialization file>'

aero_emiss.xml

Karlsruhe Institute of Technology

<emiss>

```
<routine id="dust">
   <nmodes type="int">3</nmodes>
   <d g0 1 type="real">???</d g0 1>
   <d g3 1 type="real">???</d g3 1>
   <sigma g 1 type="real">???</sigma g 1>
   <d g0 2 type="real">???</d g0 2>
   <d g3 2 type="real">???</d g3 2>
   <sigma g 2 type="real">???</sigma g 2>
   <d g0 3 type="real">???</d g0 3>
   <d g3 3 type="real">??</d g3 3>
   <sigma g 3 type="real">???</sigma g 3>
   <rbo type="real">???</rbo>
   <substances type="char">dust</substances>
 </routine>
</emiss>
```

Mode	Mean diameter (µm) number distribution	Mean diameter (μm) mass distribution	Standard deviation
Α	0.64	1.5	1.7
в	3.5	6.7	1.6
С	8.7	14.2	1.5
100	Number distribution function (Modes of Vogel et al. (2006))	Mass distribu	tion function
300 -	Mode A Mode B Mode C - Total	10-3 10-4 5 10-5 10-5 10-5 10-6 Mode A Mode A Mode C Total	A
200 -	$ \wedge$	Bi 10-7	//
100 -		Ga 10-8 E 10-9 Ma 10-10	$ \rangle$
0	1 10	10-11	10
	Particle diameter D _p [µm]	Particle diam	eter D. Jumi

Exercise 2.2.: Steps

- Simulation with a feedback of mineral dust concentration on radiation budget. The provided runfile is set in a way that aerosol radiation interaction is not active. In order to activate the radiation feedback, set iart_ari=1 in art_nml and irad_aero=9 in radiation_nml (change the name of the output folder first!) and repeat the simulation
- Plot the results with the provided Python script and discuss the differences

Exercise 2 Atmospheric chemistry modeling using MECCA

Objectives:

How to generate a chemical mechanism How to simulate with chemistry

MECCA

- Module Efficiently Calculating the Chemistry of the Atmosphere
- Chemistry module that contains a comprehensive chemical mechanism
 and allows to create an own chemistry mechanism
- Uses the Kinetic PreProcessor (KPP) by Adrian Sandu and Rolf Sander for the numerical integration
- Detailed description is given in ~/MECCAchemistry/caaba_3.0/mecca/kpp/doc/kpp_UserManual.pdf for KPP only and ~/MECCA-chemistry/caaba_3.0/manual/caaba_mecca_manual.pdf (chapter 7)

MECCA equation file (comprehensive mechanism)

~/MECCA-chemistry/caaba_3.0/mecca/gas.eqn

#EQUATIONS

{<G1nnn> ------}

. . .

. ~/MECCA-Chemistry/caaba_3.0/mecca/rpl/example.rpl

```
// here, reaction G4110 is replaced by a modified reaction:
#REPLACE <G4110>
<a> CO + OH = HO2 + CO2 : {%StTrG} 1.57E-13 + cair*3.54E-33; {&1628}
#ENDREPLACE
```

```
// add a new reaction:
#REPLACE <>
<G9876JD> XYZ + OH = RO2 + H2O : {%StG} 1.57E-13; {&&}
#ENDREPLACE
```

// to delete a reaction, specify an empty replacement: #REPLACE <G4200> #ENDREPLACE

. . .

. . .

MECCA batch file to create the mechanism

~/MECCA-Chemistry/caaba_3.0/mecca/batch/simple.bat

set apn		= 0	# number of aerosol phases [099, default=0]
set gaseqnfile	= gas	.eqn	
set rplfile		=	# no replacements
set wanted		= "Tr && G	&& \!C && \!CI && \!FI && \!Br && \!I && \!Hg && \!Het"
set mcfct		= n	# Monte-Carlo factor?
set diagtracfile	=		# diagnostic tracers?
set rxnrates		= n	# calculate accumulated reaction rates?
set tagdbl		= n	# tagging, doubling, both, none ??
set kppoption		= k	# k=kpp, 4=kp4, q=quit
set integr		= rosenbro	ck_posdef # integrator
set decomp		= n	# remove indirect indexing
set latex		= n	# latex list of reactions
set graphviz		= n	# graphviz plots?
set deltmp		= y	# delete temporary xmecca files?
set integr set decomp set latex set graphviz set deltmp		= ĸ = rosenbro = n = n = n = y	# K=Kpp, 4=Kp4, q=quit ck_posdef # integrator # remove indirect indexing # latex list of reactions # graphviz plots? # delete temporary xmecca files?

Exercise 2

- Open Exp03.ipynb in ~/MECCA-chemistry
- Follow the instructions to create the mechanism and to perform an ICON-ART simulation
- Plot the results with the provided python script

99,99% of the times, code is not the problem! So if you face an error, please take the following steps (priority):

- 1- Look at ICON and ART documentation
- 2- Check (double-check!) your namelist, XML and data files
- 3- check icon-art.kit.edu \rightarrow userguid
- 4- Contact us!

Appendix 2: ART Namelist parameters
General variables

cart	input	folder	!<	<	Absolute	Path	to	ART	source	code
	-									

iart init aero !< Initialization of aerosol species

iart init gas !< Initialization of gaseous species

lart diag out !< Enable output of diagnostic fields

lart pntSrc !< Enables point sources</pre>

lart_emiss_turbdiff !< Switch if emissions should be included as surface flux
condition</pre>

cart_io_suffix !< user given suffix instead of automatically generated grid number

! in ICON-ART input filename convention:

! ART_iconR<n>B<kk>-grid-<yyyy-mm-dd-hh>_<grid_suffix>.nc

Atmospheric Chemistry

lart_chem	!< Main switch to enable chemistry
lart_chemtracer	!< Switch for parametrised chemtracers
lart_mecca	!< Switch for MECCA chemistry
lart_psc	!< Switch for computation of PSCs
cart_vortex_init_date	!< Date of vortex initialization
<pre>cheminit_file(max_dom)</pre>	!< Path to chemical initialization file
cart_cheminit_coord	!< Path to chemical initialization coordinate file
cart_cheminit_type	!< Type of chemical initialization coordinate file

Paths and filenames of XML configuration

cart chemtracer xml	!< Path	to XML	file for	parametrised	chemtracers
				-	

cart mecca xml !< Path to XML file for MECCA tracers

cart aerosol xml !< Path to XML file for aerosol tracers

cart modes xml !< Path to XML file for modes

cart pntSrc xml !< Path to XML file for point sources

cart_emiss_xml_file !< path and file name of the xml files for emission metadata</pre>

!< Path to XML file for metadata of datasets

! that can prescribe tracers

cart ext data xml

Atmospheric Aerosol

	lart_aerosol	!< Main switch for the treatment of atmospheric aerosol
	iart_seasalt	!< Treatment of sea salt aerosol,
	iart_dust	!< Treatment of mineral dust aerosol
	iart_anthro	!< Treatment of anthropogenic aerosol
	iart_fire	!< Treatment of wildfire aerosol
	iart_volcano	!< Treatment of volcanic ash aerosol
	iart_nonsph	!< Treatment of nonspherical particles
	iart_pollen	!< Treatment of pollen
	iart_radioact	!< Treatment of radioactive particles
	cart_volcano_file	<pre>!< Absolute path + filename of input file for volcanoes</pre>
76	cart radioact file	Institute of Meteorology and Climate Research !< Absolute path + filename of input file for radioactive

Feedback processes

iart_aci_warm	!< Nucleation of aerosol to cloud droplets
iart_aci_cold	<pre>!< Nucleation of aerosol to cloud ice</pre>
iart_ari	!< Direct interaction of aerosol with radiation

References

- ICON tutorial 2019 https://code.mpimet.mpg.de/attachments/download/19568/ICON_tutorial_2019.pdf
- Zängl, G. et al. (2015). The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. *Q. J. R. Meteorol. Soc.* 141, 563–579. https://doi.org/10.1002/qj.2378
- Dipankar, A. et al. (2015). Large eddy simulation using the general circulation model ICON. *Journal of Advances in Modeling Earth Systems*, 7(3), 963–986. https://doi.org/10.1002/2015MS000431
- Giorgetta, M. A. et al. (2018). ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. *Journal of Advances in Modeling Earth Systems*, 10. https://doi.org/10.1029/2017MS001242
- Schröter, J. et al (2018). ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations, Geosci. Model Dev., 11, 4043-4068, https://doi.org/10.5194/gmd-11-4043-2018, 2018.
- Rieger, D. et al. (2015): ICON–ART 1.0 a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659-1676, https://doi.org/10.5194/gmd-8-1659-2015.
- Gasch, P. et al. (2017)Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean, Atmos. Chem. Phys., 17, 13573-13604, https://doi.org/10.5194/acp-17-13573-2017, 2017.
- Rieger, D. et al. (2017) Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany, Atmos. Chem. Phys., 17, 13391-13415, https://doi.org/10.5194/acp-17-13391-2017, 2017.
- Sander, R. et al. (2019). The community atmospheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, doi:10.5194/gmd-12-1365-2019.
- Vogel, B. et al (2006). A model of dust transport applied to the Dead Sea area. Meteorologische Zeitschrift, 15(6), 611–624. https://doi.org/10.1127/0941-2948/2006/0168

How to use AERODYN?

Aerodyn - Tracers XML

<tracers></tracers>	<a<mark>erosol id="na"></a<mark>
<aerosol id="nmb"></aerosol>	<pre><moment type="int">3</moment></pre>
<moment type="int">0</moment>	<mode type="char">sol_acc,sol_coa,mixed_acc,mixed_coa</mode>
another type - in 2024 months - and another and another mixed and	<sol type="real">1.</sol>
<mode mode="" type="char" {insoi_acc,insoi_coa,soi_acc,soi_coa,mixed_acc,mixed_coa,giant{=""></mode>	<mol_weight type="real">22.9898E-3</mol_weight>
<unit type="char">kg-1</unit>	<rho type="real">2.2E+3</rho>
<transport type="char">stdaero</transport>	<unit type="char">mug kg-1</unit>
	<transport type="char">stdaero</transport>
<a>erosolid="dust">	
	<aerosol id="cl"></aerosol>
	<pre>moment type="int">3</pre>
<mode mode="" type="char" }insol_acc,insol_coa,mixed_acc,mixed_coa<=""></mode>	<mode type="char">sol_acc,sol_coa,mixed_acc,mixed_coa</mode>
<sol type="real">1.0</sol>	<sol type="real">1.</sol>
<mol_weight type="real">50.00E-3</mol_weight>	<mol_weight type="real">35.453E-3</mol_weight>
<rbotype="real">2 650E3</rbotype="real">	<rno type="real">2.2E+3</rno>
	vunit type="char">mug kg-1
	<transport type="char">stdaero</transport>
<transport type="char">stdaero</transport>	
	<aerosol id="seas"></aerosol>
	<moment chait"="" type="int<u>>3</mo</u>ment></td></tr><tr><td></td><td><mode type=">giant</moment>
	<sol type="real">1.0</sol>
	<mol_weight type="real">58.44E-3</mol_weight>
	<rno type="real">2.2E+3</rno>
	<unit type="cnar">mug kg-1</unit>
	<transport type="char">stdaero</transport>
	<tracers></tracers>

Aerodyn - Modes XML

<kind type="char">2mom</kind> <d qn type="real">0.2E-6</d_qn>

<icoag type="int">1</icoag>

<sigma_g type="real">2.0</sigma_g>

<condensation type="int">0</condensation>

<aerosol id="sol_coa">

<kind type="char">2mom</kind> <d_gn type="real">2.0E-6</d_gn> <sigma_g type="real">2.2</sigma_g> <condensation type="int">0</condensation> <icoag type="int">1</icoag>

</aerosol>

<aerosol id="insol_coa">

<kind type="char">2mom</kind> <d_gn type="real">2.0E-6</d_gn> <sigma_g type="real">2.2</sigma_g> <condensation type="int">0</condensation> <shift2mixed type="char">mixed_coa</shift2mixed> <icoag type="int">1</icoag>

</aerosol>

<aerosol id="mixed_coa">

<kind type="char">2mom</kind> <d_gn type="real">2.0E-6</d_gn> <sigma_g type="real">2.2</sigma_g> <condensation type="int">0</condensation> <icoag type="int">1</icoag>

</aerosol>

<aerosol id="giant">

<kind type="char">2mom</kind> <d_gn type="real">1.200E-5</d_gn> <sigma_g type="real">2.0</sigma_g> <condensation type="int">0</condensation> <icoag type="int">0</icoag>

Institute of Meteorology and Climate Research

<modes>

</aerosol>

<aerosol id="insol_acc">

<aerosol id="sol acc">

<kind type="char">2mom</kind> <d gn type="real">6.00E-7</d gn> <sigma_g type="real">1.700E+0</sigma_g> <condensation type="int">0</condensation> <shift2mixed type="char">mixed_acc</shift2mixed> <icoag type="int">1</icoag>

</aerosol>

<aerosol id="mixed_acc">

<kind type="char">2mom</kind> <d_gn type="real">6.00E-7</d_gn> <sigma_g type="real">1.700E+0</sigma_g> <condensation type="int">0</condensation> <icoag type="int">1</icoag>

</aerosol>

Aerodyn - Emissions XML

<emiss>

Automated mapping to mode

</emiss>

<routine id="seas martensson"> <nmodes type="int">1</nmodes> <d g0 1 type="real">0.200E-6</d g0 1> <d_g3_1 type="real">0.690E-6</d_g3_1> <sigma g 1 type="real">1.900E+0</sigma g 1> <rho type="real">2.2E3</rho> <substances type="char">na,cl</substances> </routine> <routine id="seas monahan"> <nmodes type="int">1</nmodes> <d_g0_1 type="real">2.000E-6</d_g0_1> <d g3 1 type="real">8.500E-6</d g3 1> <sigma g 1 type="real">2.000E+0</sigma g 1> <rho type="real">2.2E3</rho> <substances type="char">na,cl</substances> </routine> <routine id="seas_smith"> <nmodes type="int">1</nmodes> <d g0 1 type="real">1.200E-5</d g0 1> <d g3 1 type="real">2.793E-5</d g3 1> <sigma_g_1 type="real">1.700E+0</sigma_g_1> <rho type="real">2.2E3</rho> <substances type="char">seas</substances> </routine>

Institute of Meteorology and Climate Research

Aerodyn - Coagulate XML

<coagulate>

<smallmode id="sol_acc">

<nmodes type="int">6</nmodes>

<bigmode id="sol_acc" type="char">sol_acc</bigmode>

<bigmode id="insol_acc" type="char">mixed_acc</bigmode>

<bigmode id="mixed_acc" type="char">mixed_acc</bigmode>

<bigmode id="sol_coa" type="char">sol_coa</bigmode>

<smallmode id="insol_acc">

<nmodes type="int">5</nmodes>

<bigmode id="insol_acc" type="char">insol_acc</bigmode>

<bigmode id="mixed_acc" type="char">mixed_acc</bigmode>

<bigmode id="sol_coa" type="char">mixed_coa</bigmode>

<bigmode id="insol_coa" type="char">insol_coa</bigmode>

<bigmode id="mixed_coa" type="char">mixed_coa</bigmode></smallmode>

<smallmode id="mixed_acc">

<nmodes type="int">4</nmodes>

<bigmode id="mixed_acc" type="char">mixed_acc</bigmode>

<bigmode id="sol_coa" type="char">mixed_coa</bigmode>

<bigmode id="insol_coa" type="char">mixed_coa</bigmode>

bigmode id="mixed_coa" type="char">mixed_coa</bigmode></smallmode>

<smallmode id="sol_coa">

<nmodes type="int">3</nmodes>

<bigmode id="sol_coa" type="char">sol_coa</bigmode>

bigmode id="insol_coa" type="char">mixed_coa</bigmode>

de id="mixed_coa" type="char">mixed_coa</bigmode></smallmode>

<smallmode id="insol_coa">

<nmodes type="int">2</nmodes>

<bigmode id="insol_coa" type="char">insol_coa</bigmode>

bigmode id="mixed_coa" type="char">mixed_coa</bigmode></smallmode>

<smallmode id="mixed_coa">

<nmodes type="int">1</nmodes>

<bigmode id="mixed_coa" type="char">mixed_coa</bigmode>

</smallmode>

</coagulate>

Without aerosol microphysics - Tracers XML

<tracers> <aerosol id="dusta"> <moment type="int">3</moment> <mode type="char">dusta</mode> <label type="char">dusta</label> <sol type="real">1.0</sol> <mol_weight type="real">50.00E-3</mol_weight> <rho type="real">2.650E3</rho> <unit type="char">mug kg-1</unit> </aerosol> <aerosol id="dusta0"> <moment type="int">0</moment> <mode type="char">dusta</mode> <sol type="real">1.0</sol> <mol_weight type="real">50.00E-3</mol_weight> <rho type="real">2.650E3</rho> <unit type="char">kg-1</unit> </aerosol> . . .

Without aerosol microphysics - Modes XML

<aerosol id="dusta"> <kind type="char">2mom</kind> <d_gn type="real">6.445E-7</d_gn> <d_gm type="real">1.500E-6</d_gm> <sigma_g type="real">1.700E+0</sigma_g> <rho type="real">2.650E+3</rho> <condensation type="int">0</condensation> <icoag type="int">0</condensation> </aerosol>

<aerosol id="dustb"> <kind type="char">2mom</kind> <d_gn type="real">3.454E-6</d_gn> <d_gm type="real">6.700E-6</d_gm> <sigma g type="real">1.600E+0</sigma g> <rho type="real">2.650E+3</rho> <condensation type="int">0</condensation> <icoag type="int">0</icoag> </aerosol> <aerosol id="dustc"> <kind type="char">2mom</kind> <d gn type="real">8.672E-6</d gn> <d_gm type="real">1.420E-5</d_gm> <sigma_g type="real">1.500E+0</sigma_g> <rho type="real">2.650E+3</rho> <condensation type="int">0</condensation> <icoag type="int">0</icoag> </aerosol> </modes>

Without aerosol microphysics - Emissions XML

<emiss>

<routine id="dust">

<nmodes type="int">3</nmodes>

<d_g0_1 type="real">6.445E-7</d_g0_1>

<d_g3_1 type="real">1.500E-6</d_g3_1>

<sigma_g_1 type="real">1.700E+0</sigma_g_1>

<d_g0_2 type="real">3.454E-6</d_g0_2>

<d_g3_2 type="real">6.700E-6</d_g3_2>

<sigma_g_2 type="real">1.600E+0</sigma_g_2>

<d_g0_3 type="real">8.672E-6</d_g0_3>

<d_g3_3 type="real">1.420E-5</d_g3_3>

<sigma_g_3 type="real">1.500E+0</sigma_g_3>

<rho type="real">2.650E3</rho>

<substances type="char">dusta,dustb,dustc</substances>

</routine>

</emiss>

Processes occur in the following order:

- 1. Coagulation
- 2. ISORROPIA
- 3. Condensation
- 4. Nucleation
- 5. Shifting
- 6. Washout

