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The quiet revolution of numerical
weather prediction
Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

A t the turn of the twentieth century, Abbe1 and Bjerknes2 pro-
posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the atmo-

sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimistic interpretation
of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,
no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years
later, this paradigm translates into solving daily a system of nonlinear
differential equations at about half a billion points per time step between
the initial time andweeks tomonths ahead, and accounting for dynamic,
thermodynamic, radiative and chemical processes working on scales
from hundreds of metres to thousands of kilometres and from seconds
to weeks.
A touchstone of scientific knowledge and understanding is the ability

to predict accurately the outcome of an experiment. Inmeteorology, this
translates into the accuracy of the weather forecast. In addition, today’s
numerical weather predictions also enable the forecaster to assess quan-
titatively the degree of confidence users should have in any particular
forecast. This is a story of profound and fundamental scientific success
built upon the application of the classical laws of physics. Clearly the
success has required technological acumen as well as scientific advances
and vision.
Accurate forecasts save lives, support emergency management and

mitigation of impacts and prevent economic losses from high-impact
weather, and they create substantial financial revenue—for example, in
energy, agriculture, transport and recreational sectors. Their substantial
benefits far outweigh the costs of investing in the essential scientific
research, super-computing facilities and satellite and other obser-
vational programmes that are needed to produce such forecasts3.
These scientific and technological developments have led to increas-

ing weather forecast skill over the past 40 years. Importantly, this skill
can be objectively and quantitatively assessed, as every day we compare
the forecast with what actually occurs. For example, forecast skill in the
range from 3 to 10 days ahead has been increasing by about one day per
decade: today’s 6-day forecast is as accurate as the 5-day forecast ten
years ago, as shown in Fig. 1. Predictive skill in the Northern and
Southern hemispheres is almost equal today, thanks to the effective

use of observational information from satellite data providing global
coverage.
More visible to society, however, are extreme events. The unusual

path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1–2 weeks lead time, and tropical sea surface
temperature variability following the El Niño/Southern Oscillation phe-
nomenon can be predicted 3–4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-
tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.
This Review explains the fundamental scientific basis of numerical

weather prediction (NWP) before highlighting three areas from which
the largest benefit in predictive skill has been obtained in the past—
physical process representation, ensemble forecasting and model initi-
alization. These are also the areas that present the most challenging
science questions in the next decade, but the vision of running
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Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting
satellite data through the use of variational data100.
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global models at 1 km horizontal resolution, thus with an order of
magnitude greater resolution than today, has added a new dimension,
as it requires significant investment in high-performance computing
with as-yet unknown technology.

The physics of forecasting
The Navier–Stokes and mass continuity equations (including the effect
of the Earth’s rotation), together with the first law of thermodynamics
and the ideal gas law, represent the full set of prognostic equations upon
which the change in space and time of wind, pressure, density and
temperature is described in the atmosphere4. These equations have to
be solved numerically using spatial and temporal discretization because
of the mathematical intractability of obtaining analytical solutions, and
this approximation creates a distinction between so-called resolved and
unresolved scales of motion. Physical processes that operate on unre-
solved scales down to the molecular enter the equations for the resolved
scales through source terms for mass, momentum and heat originating
from friction, moist processes such as condensation and evaporation,
and radiative heating and cooling. Since these processes are typically
unresolved they need to be ‘parameterized’ in terms of their interaction
with the resolved scales. Simplifications can be applied that facilitate the
numerical solution and reduce somewhat the complexity of the set of
equations, as demonstrated for the first time—even though with limited
success—by Richardson5. By introducing approximations that accur-
ately describe the largest scales of motion in the atmosphere, the first
attempt to use the first electronic computer for weather prediction was
carried out in Princeton in 19506. While the Princeton simulations were
hindcasts, the first real-time forecasts were made in Stockholm in 19547.
Only with increasing availability of supercomputing power in the

1970s was it feasible to solve the full set of equations as proposed by
Abbe and Bjerknes8. Consequently, various numerical methods of solu-
tion emerged that addressed numerical stability, accuracy, computational
speed9 and versatility to deal with more prognostic variables, and the
interaction between resolved and unresolved scales10. The main compo-
nents of these methods are: the representation of spatial variability by the
choice of spatial discretization, the time steppingmethod, the treatment of
boundaries, and the initialization approach11. This capability has founded
what we refer to as NWP12. Today, a hierarchy of many models with
different levels of complexity exists covering the full range between global
climate projections13, global weather prediction, and local-areamodelling
for high-impact weather14 or air-quality prediction15.

Major steps
The improvements in the representation of unresolved processes in
global models, the advent of ensemble methods producing forecast

uncertainty estimates, and the introduction of objective analysis tech-
niques to determine the initial state have led to the predictive skill
attained today. Representing physical processes, ensemble modelling
and model initialization are also the key challenges for the future, com-
bined with technological challenges associated with observations and
computing, as we will discuss later.

Physical processes
Parameterizations capture radiative, convective and diffusive effects in
the atmosphere and at the interface between the atmosphere and the
surface, and are often determined by relatively small spatial scales16,17.
Figure 2 provides an illustration of these processes and where they are
relevant. Despite not being resolved, these processes drive heat and
momentum budgets at the grid scale18,19 and are crucial for achieving
predictive skill. The degree of parameterization and therefore the rep-
resentation of the basic physics varies significantly for different pro-
cesses20. For example, the global model formulation for radiation and
cloud microphysics processes is similar to that used in regional and
high-resolution models because the formulation accounts for the basic
small-scale physics, which is similar across these model spatial scales,
even if they require added complexity going to higher spatial resolution.
The formulations are mostly limited by our understanding of physical
process detail needed for parametric representations that define the
spatially averaged impact of the process on momentum and heat fluxes.
On the other hand, deep convection and specific boundary layer pro-
cesses require a higher degree of parametric formulation as they only
occur in small fractions of the grid scale; consequently these parameter-
izations critically depend on which resolution is actually used.
Parameterizations play a fundamental role in determining predictive

skill because they determine key aspects of the simulated weather, such
as clouds and precipitation, as well as temperature and wind. In opera-
tional NWP models, essentially the same formulation for the parame-
terizations is used for scales of 10–100 km in short-to-medium range
forecasts, minimization algorithms used for model initialization, and
seasonal range forecasts. Achieving this element of ‘grid-scale invari-
ance’ while including as much physical process detail as possible has
been a fundamental breakthrough in the recent past.

Ensemble modelling
Early in the twentieth century, Poincaré21 recognized that forecasts of
nonlinear systems can vastly differ if small perturbations are applied to
the initial conditions, and that this difficulty could be fundamental in
limiting predictive skill. In the 1950s, Thompson performed one of the
first quantitative estimates of initial errors growing during the forecast22,
while Lorenz23 formulated this understanding more holistically and
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Figure 2 | Physical processes of importance to
weather prediction. These are not explicitly
resolved in current NWP models but they are
represented via parameterizations describing their
contributions to the resolved scales in terms of
mass, momentum and heat transfers.
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founded chaos theory as a result of his attempt to quantify atmospheric
predictability. From his conclusion—that unstable systems have finite,
state dependent limits of predictability—was born the need for encap-
sulating the growth of initial condition uncertainties, their evolution as a
function of the atmospheric state, and errors introduced by imperfect
models. The recognition of imperfect forecasts24 and determining how
to calculate analysis and forecast uncertainty using an ensemble
approach25 represent major and unique accomplishments in physical
sciences. This is particularly true for the prediction of highly variable
parameters like precipitation (Fig. 3), where ensemble spread quantifies
forecast uncertainty of rainfall location and intensity and thus provides
essential information to users.
The nonlinear complexity of the system means that purely statistical

methods to assign an uncertainty to the forecast are inadequate. Instead,
an ensemble of many complete, physical, nonlinear realizations of the
system is needed26,27, providing a seamless analysis and forecast ensemble
in which observational information is used to reduce uncertainty. In
practice, the ensemble members are created using perturbations, equival-
ent to analysis and model errors, added to the initial state and the model
physical processes. Determining these perturbations consistently and
seamlessly so that the ensemble provides a good estimate of uncertainty
across a wide range of prediction scales is challenging, and the input of
mathematics and statistical physics expertise was crucially important28,29.
Weather forecasts today involve an ensemble of numerical weather pre-
dictions, providing an inherently probabilistic assessment.

Model initialization
Early methods for the specification of initial conditions were based on
the analysis of graphical and synoptic weather charts. Various forms of
interpolation procedures were later replaced by data assimilation tech-
niques based on optimum control theory30. The derivation of the current
state (called the analysis) of the atmosphere and surface is treated as a
Bayesian inversion problem using observations, prior information from
short-range forecasts and their uncertainties as constraints as well as the
forecast model31,32. These calculations, involving a global minimization,
are performed in four dimensions to produce an analysis that is phys-
ically consistent in space and time and can deal with huge amounts of
observational data that are heterogeneously distributed in space and
time (such as the vast amount and diversity of satellite data used for
Earth observation since the 1980s). Since initial state uncertainty estima-
tion is also crucial for ensemble prediction and because data assimilation
employs both imperfect observations and forecast model, ensemble
methods have also become an integral part of data assimilation33, as
shown in Fig. 4.
The operational implementation of these four-dimensional variational

(4D-Var) data assimilation techniques34 marks a major milestone in
operational global NWP. At the European Centre for Medium-Range
Weather Forecasts (ECMWF) this occurred in 199735, followed by

Météo-France in 200036, the Met Office in 200437, both the Japan
Meteorological Agency38 and Environment Canada in 200539, and the
United States Naval Research Laboratory in 200940. Development and
first implementation of 4D-Var took more than 10 years, and further
research has substantially refined the main ingredients. These were
the increasing use of satellite radiance data by combining the forecast
model with computationally efficient radiative transfer models41,42,
the much refined characterization of short-range forecast43 and obser-
vation errors44 using state dependent weights for each, and better use of
observations arising from significant improvements of physical
parameterizations45.

Predictability and predictive skill
A continuing and important area of research focuses on the sources of
predictability in the Earth system. Forecasting future weather is like a
battleground, with the forces of predictability pitched against those of
unpredictability. The sources of predictability include large-scale for-
cing of smaller-scale weather, teleconnections or the chain of predict-
ability across different geographical areas46, and the interactions
between atmosphere, land surfaces and vegetation, sea-ice and ocean
acting on longer timescales. The sources of unpredictability include
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Figure 3 | Schematic diagram of 36-h ensemble
forecasts used to estimate the probability of
precipitation over the UK. A single forecast (red
frame, centre) is generated by integrating the
model forward in time from the analysis of initial
atmospheric state (left). Small perturbations to the
analysis, within known analysis uncertainty,
provide an ensemble of forecast solutions, which
sample the forecast uncertainty (multiple frames).
These solutions are combined, including some
spatial neighbourhood sampling, to provide a
smooth estimate of probability of precipitation
(right). Image courtesy of K. Mylne (Met Office).

First guesses

Observation

4D-Var trajectories

Observation

09:00 21:0018:0015:00

Assimilation window Forecast

Ensemble analysis Ensemble forecast

12:00 Time (UTC)

Figure 4 | Schematic of the ensemble analysis and forecast cycle. Global
ensemble forecast trajectories, which have been initialized by a previous
analysis ensemble, are produced over a time window (for example, 09:00–21:00
UTC). These provide estimates of the current weather (first guesses). The
difference between these forecasts and available observations (shown as data
points with error bars) is the short-range forecast error. By minimization in
four dimensions employing variational techniques, improved estimates (4D-
Var trajectories) are created with reduced distance to observations. The next
cycle of ensemble forecasts is then initialized from these refined analyses. Image
courtesy of M. Bonavita (ECMWF).
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instabilities injecting chaotic ‘noise’ at small scales and the upscale pro-
pagation of their energy, the errors associated with numerical and phys-
ical approximations, as well as the insufficient number and poor use of
observations. Box 1 provides an example of such teleconnections and the
sources of poor forecast performance over Europe in themedium range.
The outcome of this ‘battle’ can be described as noise growing non-

linearly during the forecast and thereby leading to fundamental limits of
how far into the future certain structures can be predicted. The limit for
small-scale events is between hours and days, for accurate and reliable
prediction of high-impact weather events about 1–2 weeks, for predic-
tion of large-scale weather patterns and regime transitions about a
month, and for global circulation anomalies about a season47. The longer
the forecast range the more the predictive skill relates only to anomalies,
that is, the difference between the state and its modelled climatological
mean, and the more important space-time averaging becomes to iden-
tification of the signal. In the short range predictive skill exists for the
details, while in the long range skill relates to larger-scale structures.
Predictive capability that is seamless across this wide range of forecast

horizons is therefore about capturing processes acting on very different
time and space scales.
NWP has a fundamental advantage over many other scientific dis-

ciplines in that its skill is objectively evaluated daily and globally, so that
success and failure of forecasts is accurately known and pathways to
improve predictive skill can be effectively tested48,49. To evaluate forecast
skill, metrics such as mean and root-mean-square errors, and the cor-
relation of the forecast with analysis anomalies of upper-air and surface
forecast fields are used. In addition, scores targeting more variable para-
meters such as precipitation50 exist. Model biases become significant
further into the forecast range. While biases can be reduced through
calibration using past forecasts51, the identification of their sources in
complex models remains one of the dominating challenges for NWP
and even more so for climate prediction52. Diagnostic methodologies
employing data assimilation statistics53 can help since the signature of
most biases is already evident in the analysis and early in the forecast,
even though their magnitude is small. This approach offers benefits for
weather and climate science alike.

BOX 1

Sensitivity of forecasts to initial conditions and error propagation
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Box 1 Figure j Maps showing the long-range impact of model
initialization on the European forecast. Panel a shows the day-6
mean forecast error (the height of the 500 hPa pressure level in
metres) of the flow at around 5 kmheight (colour-coded shading), the
forecast itself (solid isolines) and the verifying analysis (dashed
isolines) valid on 15 February 2014. Over the western US, the jet
streamextended far to the south, alignedwith a lower level trough. The
long red arrow indicates the travel path of an atmospheric wave
disturbance guided by thewesterly flow. The presence of a large-scale
dipole error pattern highlights the lag between forecast and analysed
state (blue double-headed arrow). The large forecast errors over
Europe were mostly produced by a phase-shift of the wave that
increased with time. Back-tracking the wave propagation path

identifies the tropical East Pacific (boxed in b) as a likely location of a
possible forecast error source. This area was characterized by very
large 24-h forecast errors of upper-level winds because of the paucity
of wind observations there. When running an experiment where the
area in thebox inb is relaxed towards theanalysis rather than evolving
in the forecast, the strong initial growth of forecast errors is reduced
and, six days later, the lag of the wave patterns between forecast and
analysis is reduced over Europe (blue double-headed arrow),
producing about half of the original forecast errors. This experiment
demonstrates the long-range impact of model initialization, the
linkage between tropics andmid-latitudes, and thus shows an
example of how predictive skill in the one-week time range can be
increased.
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AsNWP involves an ensemble of forecasts, evaluationmetrics need to
assess the moments of probability distributions such as ensemble mean
error and the sharpness of the distributions. Forecast reliability is deter-
mined by comparing forecast distributions with the observed frequency
of occurrence. Since ensembles are designed to provide valuable
information on the probability of weather extremes54, scores targeting
the tails of probability distributions are being developed accounting for
sparse statistics55.
In addition, comprehensive feature-based evaluation is available for

tropical cyclones56 or weather regimes57, and for the evaluation of how
well models represent the links between lower and higher latitudes58,59,
troposphere and stratosphere60,61, planetary wave activity driving syn-
optic scale features62, and synoptic scales interacting with small-scale
convection63,64 and the surface65,66.
An effective way to verify predictive skill also arises from combining

weather with hydrological modelling, whereby predicted river stream-
flow and discharge help to evaluate predictions of precipitation, run-off
and storage in NWP models, both for single realization and ensemble
forecasts67,68. The enhancement of weather models with variables
describing atmospheric composition such as aerosols and trace gases
also introduces new ways to evaluate atmospheric evolution by consid-
ering tracer advection and model chemistry parameterizations69.

Where we are today
Operational NWP centres provide predictions from the very short range
at kilometre scale multiple times per day up to global seasonal forecasts
at tens of kilometres horizontal resolution once per month. These fore-
casts relate to the weather but are also extending to air-quality70 and
hydrological71 applications.
Data assimilation algorithms employ the forecast model and of the

order of 107 observations per day to derive initial conditions that are
physically consistent in four dimensions: over the globe, from surface up
to mesosphere (,80 km) and along time windows from hours to days.
Operational models are updated frequently to incorporate new science
that enables improvements in the representation of model physics and
model uncertainty, in numerical algorithms and observational data
usage, and to enhance computational efficiency.
Gauging the relative contributions to success and progress from

model development, data assimilation algorithms and observational
data usage is difficult because they are interdependent. More accurate
model physics means that forecasts compare better with observations
and facilitate improved data assimilation; in turn this permits ingestion
of more observations thereby further improving forecasts.
NWP has also benefited enormously from computing advances. In

terms of floating point operations, computing power has increased by
about one order ofmagnitude every five years since the 1980s. This is the
result of processor technology advances and more processors being
used. Intel co-founder GordonMoore’s law states that computing power
doubles every 18 months owing to increased transistor density per chip
and clock speeds. This growth has gone hand-in-hand with the increas-
ing size of the analysis and forecast computational task in NWP. At
ECMWF, the data assimilation performs model integrations in multiple
stages totalling of the order of 100 iterations across a 12-h window for a
total of 650 million grid-point calculations. In parallel, about 10 million
radiance calculations are performed to compare the forecast model with
satellite observations from more than 60 instruments. Today, the
ECMWF 16-km highest-resolution model performs calculations on two
million grid columns with 10-min time stepping over a 10-day period,
that is, 1,440 time steps. The corresponding ensemble produces 15–30 day
forecasts with 50 members with a horizontal resolution of 30–60 km and
30-min time steps. Thus twice per day about 40 billion grid-column
calculations are performed in about 2.5 h real time. This computing task
demands some of the largest supercomputing facilities available.
The time series describing the improving skill of global NWPs is

impressive (Fig. 1), revealing that while there is some year-to-year vari-
ability, for more than three decades forecast skill has been advancing

continuously72,73. Predictive skill improves at a rate such that useful skill
is retained one more day into the forecast range for every decade of
research and development. This steady progress has been the result of
advances in the science, in the utilization of observations and in super-
computing capacity. Some of the fluctuations in skill are a result of
periods when the atmosphere exhibits more or less potential predict-
ability. This means that certain weather regimes appear to be easier to
predict accurately further into the future than others. Our understand-
ing of these regimes of flow is developing and enabling a more discern-
ing quantification of predictive skill to be developed.

The future is bright
The evolution of weather science as well as of high-performance com-
puting and observing systems in the future is crucial for continuing the
progress in NWP. Critical scientific and technological cross-roads have
been reached or are very likely to be reached in the near future.
Consequently, the present period is of fundamental importance for
how weather forecasting and also climate science will evolve. Building
on anticipated advances in the understanding of physical processes, in
numerical model development, in observation technology and high-
performance computing, the vision for global weather and climatemod-
elling a decade or more in the future is as follows: in terms of resolution
to be able to perform global convection-resolving simulations at a hori-
zontal resolution of the order of 1 km; in terms of complexity to be
able to run fully coupled atmosphere–land–ocean–sea-ice models.
Ensembles at this resolution and complexity will predict probabilities
of dynamics, physics, chemistry and probably selected bio-chemical
processes into the multi-seasonal range for weather, and into the
multi-decadal range for climate. These global predictions provide essen-
tial initial and boundary information for finer-scale limited-geograph-
ical-domain simulations of short-range detailed weather development.

The scientific challenges
The main scientific challenges for future global NWP relate to the main
themes that have produced key advances in the recent past and that have
brought weather forecasting to the level where it is today: physical
process parameterization, analysis and forecast uncertainty formulation
through ensembles, and the provision of physically consistent initial
conditions for forecasts using observations. There are a number of key
areas in which substantial progress can be expected in the future that
also require significant advances compared to current thinking.
Regarding physical parameterizations, one might anticipate that with

increasing resolution the need for parameterization would be gradually
reduced. For radiation and cloud processes and land surface models this
is a matter of moving current schemes towards fully explicit models
already used in regional and local applications at the kilometre scale.
For convection, the situation is more complex because large tropical
convective clouds or organized convection occur even at currently
resolved scales (15 km) while embedded small-scale convective plumes
may not be resolved even at 1 km and will still require parameterization.
This range of model resolutions with partly resolved convection is also
referred to as the grey zone, since resolved and parameterized contribu-
tions to fluxes need to be quantified and combined. Existing schemes
assume that convection is entirely unresolved and so they are not able to
adequately represent the impact of both resolved and unresolved process
components on heat and momentum at resolved scales in the grey zone.
High-resolution limited-area cloud models have demonstrated that

the dynamic modes of organized convection can be captured and that
the modelling of the lifecycle of convection, cloud organization or its
interaction with large-scale circulation can be improved74. Whether run-
ning global models at scales of the order of 1 km also eliminates all
convection-related uncertainties and produces a fundamental stepping
stone for reducedmodel biases and enhanced predictive skill at all forecast
ranges is not clear at present75. As these high resolutions are not yet in
reach, convection parameterizations will remain crucial for global
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weather and climate modelling for the next decade76 and progress in this
area will require joint efforts in the weather and climate communities77,78.
There are two other areas that needmuchmore attention in the future

and promise significant boosts of skill, but also involve substantial
investments in scientific development and computing.
First, the uncertainties inherent to physical parameterizations, either

from incomplete process understanding or the dilemma of representing
the impact of unresolved processes on the resolved scales, may require a
fundamentally different approach. Elements of parameterizations or
entire schemes are likely to require components that appear statistical
to the large scales because they are not fully determined by the resolved
scales79. Examples are stochastic sampling of parameter probability dis-
tribution functions, stochastically driven sub-cell models, or super-
parameterizations80 through embedding entire convection-resolving
simulations at sub-grid scale. How radical this approach needs to be is
currently not clear.
Second, more physical as well as chemical processes will be added.

More physical processes will be needed because of the modelled coup-
ling of the atmosphere with ocean, land surface and sea-ice models,
some of which are already in operational use today81,82. Each coupling
has its own characteristic space and time scales and the coupling per se
provides most benefit beyond the 3–7 day range since ocean, sea-ice and
land surface processes are relatively slow and mostly affect longer-term
system memory. However, there are examples where coupling also
affects the short range: for example, when oceanic upwelling in the wake
of slowly moving tropical cyclones affects their intensity, or where rain-
fall over land is strongly constrained by surface evaporation and thus soil
moisture.
The greatest scientific challenge for coupling is associated with

matching fluxes at the interfaces where systematic errors in each com-
ponent interact83 and can produce model shocks and compensating
changes ofmean state at every coupling time step and through feedbacks
in longer integrations.
Atmospheric constituents such as trace gases and aerosols directly

affect radiative heating, but aerosols can also act as condensation nuclei
in cloud formation and heterogeneous chemistry occurs at the surface of
polar stratospheric clouds, accelerating ozone destruction. Nevertheless,
aerosols and trace gases are important to forecast in their own right
because of their impacts on air quality. An associated challenge from
adding more physical and chemical processes is that initial conditions
for these constituents are also required and thus more and complex
observations need to be assimilated. Ensemble prediction reliability
beyond the medium range will therefore be enhanced by representing
the uncertainty of muchmore complex processes inmodels and by being
able to initialize coupled models using much more diverse observations.
Using more of the existing and new observations, and advances in

data assimilation pose more science challenges for NWP. Currently,
each global forecast uses about 5–10% of the total satellite data volume;
this fraction containsmost of the information content for that particular
forecast. This approach is of fundamental importance to optimallyman-
age the substantial global investment in Earth observation, especially
from satellites84. However, NWP is limited by insufficient observational
data. Beyond the maintenance of the backbone satellite and ground-
based observing systems that measure vertical profiles of temperature,
moisture, clouds and near-surface weather, fundamental observables are
missing. An example is the direct observation of upper-level wind with
Doppler-radar technology85, but this technology is not yet available in
operational satellite programmes. Wind information is primarily
needed in the tropics, an area covering around 50% of the Earth and
where sparse observations are a serious impediment to increased ana-
lysis accuracy. However, the existing backbone observations also need to
be provided by a robust and resilient observing system, which requires
substantial international investment and coordination. A similar level of
coordination is required for satellite and ground-based observations.
Notwithstanding the complexity of current data assimilation there are

many challenges for the future, most of all regarding improved solution

algorithms; such algorithms will be targeted at enhancing the exploita-
tion of new observational data, but will also be able to handle improved
models. Computational affordability will continue to be a constraint,
given that a sizeable proportion of the cost of producing a forecast is
associated with data assimilation. Next-generation data assimilation
methods will probably employ fundamentally new mathematics, but
assimilation methods in the near future will probably be based on a
combination of existing concepts.
Current algorithms commonly rely on linear principles and vari-

ational methods, whereas certain components, such as error statistics,
are obtained from ensembles. The variational principle has been imple-
mented in different ‘flavours’ and the next decade is likely to be domi-
nated by either choosing the most effective combination of variational
and ensemble elements86 or by using purely ensemble based methods
like ensemble Kalman filters87. Smaller-scale effects operating on shorter
time scales (for example, convection) may require nonlinear data assim-
ilation methods for which only limited experimentation with idealized
models exists88. These are currently difficult to generalize for global
operational applications.
Coupled data assimilation will become critical for the initialization of

the future coupled models89. This assimilation will need to include
atmospheric composition (aerosols, trace gases) as well as ocean, land
surfaces and sea-ice. Each Earth-system component has particular pro-
cess characteristics and space–time scales, and dealing with those in a
fully unified data assimilation framework will be extremely challenging.

Technological challenges
Today’s highest-performance computers employed in NWP rank in the
top 20 of the 500 most powerful systems and execute computations at
petaflop (1015 floating point operations) per second rates, ingesting of
the order of 100Mbytes of observational data and producing of the order
of 10 Tbytes (that is, 103 1012 bytes) of model output per day. Future
generations of global NWP models with kilometre scales in the hori-
zontal will integrate of the order of 100 prognostic variables over about
53 108 grid points for of the order of 100 ensemble members with time
steps of seconds in an atmosphere with about 100 levels, coupled to
surface models of somewhat smaller dimensions. Observational data
usage will also increase by an order of magnitude owing to the inter-
nationally coordinated availability of high-resolution spectrometers in
low-Earth and geostationary orbits with thousands of spectral channels.
However, the expected future high-performance computing techno-

logy development will impose new constraints on how to address the
science challenges. In the past, processor performance has evolved
according to Moore’s law90, as has memory capacity and processor
clock-speeds. This trend cannot be expected to continue in the future
as energy cost has to be reduced. In the future, muchmore emphasis will
be placed on parallel computing and this is where the ‘scalability’ of an
application becomes important, providing time-to-solution gains when
the model is run on more (and combinations of different types of)
processors. The gain from the parallel execution of parts of the code is
limited by the sequentially run elements, which fundamentally limits
scalability, as does the need to exchange large amounts of data between
processors. Making NWP codes more scalable is among the top priorit-
ies in NWP for the next 10 years.
For NWP centres such as ECMWF, the upper limit for affordable

power usage may be about 20 MVA (ref. 91). The likely future NWP
system will be of the order of 100–1,000 times larger as a computational
task than today’s systems, and would require about 10 times more
power. Figure 5 illustrates the increase in compute cores and electric
power supply if model resolution is increased for a single forecast and a
50-member ensemble, assuming today’s model design and available
technology. To approach the resolutions of 1–5 km that are considered
crucial for resolving convection, high-performance computers of unpre-
cedented dimension and cost (assuming the use of conventional tech-
nology) would be required.
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A change of paradigm is therefore needed regarding hardware, design
of codes, and numerical methods92. New technologies will combine and
integrate low-power processors with the successors of today’s CPUs to
give the best of both worlds—namely, highly parallel compute perform-
ance with little data communication at lower clock rates, and CPU-type
performance with large memory, a fast data interface and higher clock
rates. Code design and algorithm choice must be adapted to this tech-
nology by optimizing floating point operation counts and memory
usage, which is a fundamental challenge given that we are dealing with
vast heritage codes with millions of lines of instructions. In 10 years,
global ensemble forecasts will be run on of the order of 105–106 proces-
sors. Fault awareness and resilience management will be crucial, given
the certainty of processor failures and the advent of inexact low-energy
hardware93.
This computing challenge is enhanced by the requirements for data

distribution and archiving. While data growth appears slower than
compute growth, exabyte (1018 bytes) data productionmay be reached
earlier than exaflop computing. Re-computing is even more costly
than archiving, and thus it is inevitable that the data challenge will
need to be tackled with high priority94. As for future processor tech-
nology, hardware will limit data transfer bandwidth. Occasional hard-
ware failure needs to be actively accounted for by designing resilient
storage systems. Such failures also have fundamental implications for
the design of future work flows. Advanced data compression methods
need to be implemented, and standardized and supported by the
weather and climate community.
Many technological opportunities and challenges will arise from future

Earth observing systems. At the high end, new satellite instrument tech-
nology will increasingly move towards hyper-spectral radiometers, with
thousands of spectral channels sounding the atmospheric thermodyna-
mical state and composition, together with active instruments (such as
high-resolution radars and lasers) sounding surface characteristics, aero-
sols, wind, water vapour, clouds and precipitation. Both instrument cat-
egories can produce data rates of the order of 100 Gbytes per day that
require downlinks, pre-processing, data dissemination within a few hours
and ingestion in forecasting systems. The distribution and archiving of

these data volumes will need to be managed with a similar parallelized
approach as the model output. Data dissemination will only be feasible if
compression techniques are applied, potentially accepting ‘information
loss’95. At the low end, the use of commodity devices, such as mobile
phones, with good sampling but less accuracy for gathering meteoro-
logical observations is only starting now, but offers potential for high-
density observational networks in certain areas96,97.
It is clear that scientific and technological challenges are interdepend-

ent in many areas. The efficiency of computing and data handling
imposes hard limits onmodel complexity inweather and climatemodels
that are run within tight production schedules, and it will be challenging
to run globally at 1 km convection-resolving scales. This trade-off
between scientific and compute performance is not new, but ‘scalability’
issues add a new dimension98.
The quiet revolution of numerical weather prediction has required

combined scientific, observing and computational technology advances
to be made. This combination is common to all natural sciences that
necessitate the solution to large problems, such as simulating the neuro-
logical connectivity of the human brain or the evolution of the galaxies
in the cosmos. Further advances require more interdisciplinary research
at the science–technology interface. As society’s requirement for more
accurate and reliable information regarding weather and climate grows
ever more pressing, global numerical models will need to increase in
both resolution and complexity. This further progress in global NWP
can be made but will require combined investment in all the elements
reviewed in this paper99, as summarized schematically in Fig. 6.
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